NESTED COISOTROPICS AND SECOND MICROLOCALIZATION

ABSTRACT. Our first goal is to understand the relationship between second microlocal pseudodifferential calculi $\Psi_{2,h}(\mathcal{C}_1)$, $\Psi_{2,h}(\mathcal{C}_2)$ associated with nested coisotropic submanifolds $\mathcal{C}_2 \subset \mathcal{C}_1$. Then we consider the relationship between the corresponding second wavefront sets: ${}^2WF_{\mathcal{C}_1} \subset SN(\mathcal{C}_1)$, ${}^2WF_{\mathcal{C}_2} \subset SN(\mathcal{C}_2)$.

1. INTRODUCTION

In this paper, we consider chains of linear coisotropic submanifolds of $T^*\mathbb{T}^n$. By chains, we mean sequences of nested coisotropics

$$\mathcal{C}_p \subset \ldots \subset \mathcal{C}_2 \subset \mathcal{C}_1 \subset T^* \mathbb{T}^n$$

The codimension of C_{j+1} is strictly greater than that of C_j , so $p \leq n$.

This project is motivated by the paper [1], in which the authors second microlocalize at sequences of nested *primitive submodules* inside \mathbb{Z}^n .

2. Calculi associated to nested coisotropics

We speculate a relationship between the second microlocal calculi determined by these coisotropics.

Conjecture 2.1. Let $C_{j+1} \subset C_j \subset T^*\mathbb{T}^n$. Let

$$\beta_{\mathcal{C}_{j+1}} : [T^*\mathbb{T}^n; \mathcal{C}_{j+1}] \longrightarrow T^*\mathbb{T}^n$$

be the blowdown map for \mathcal{C}_{j+1} . Choose $B \in \Psi^{0,0}_{2,h}(\mathcal{C}_{j+1})$ satisfying the condition

(2.1)
$${}^{2}\mathrm{WF}'_{0}(B) \cap \beta_{\mathcal{C}_{j+1}}^{-1}(\mathcal{C}_{j} \setminus \mathcal{C}_{j+1}) = \emptyset.$$

Then

$$B \circ \Psi_{2,h}(\mathcal{C}_j) \subset \Psi_{2,h}(\mathcal{C}_{j+1}).$$

The idea behind this conjecture is as follows. As C_j is the larger coisotropic, its spherical normal is smaller than that of C_{j+1} (i.e., is comprised of *fewer* normal directions). Consider a symbol function in the C_j calculus. This is a function which may be singular at $C_j \times \{h = 0\}$, but whose singularity is resolved in the blowup. Since the introduction of fewer normal directions is sufficient to resolve this hypothetical singularity, introducing a greater number of normal directions would certainly resolve such a singularity. However, since the C_{j+1} -total symbol space is the blowup of $C_{j+1} \times \{0\} \subset C_j \times \{0\}$, we must first apply a cutoff and specifically consider the singularity of the symbol at $C_{j+1} \times \{0\}$. So we conjecture that the symbol, after application of cutoff, may be regarded as a symbol in the C_{j+1} calculus. In Figure 1, $C_2 \subset C_1$ is at the center of the sphere (n = 3). We are cutting off away from the line segments to the left and right of the sphere. In particular:

Date: May 11, 2017.

FIGURE 1. Lifting part of C_1 to the C_2 -principal symbol space

Conjecture 2.2. Let $C_{j+1} \subset C_j$, as above. Let \Re_{C_j} denote the residual algebra in $\Psi_{2,h}(C_j)$, and likewise for $\Re_{C_{j+1}}$. For any operator B fulfilling condition (2.1), we have

 $B\Re_{\mathcal{C}_j} \subset \Re_{\mathcal{C}_{j+1}}.$

More specifically, $B\Re^l_{\mathcal{C}_j} \subset \Re^l_{\mathcal{C}_{j+1}}$ for each $l \in \mathbb{R}$.

We have proved Conjecture 2.2 in the model case:

Lemma 2.3. For $0 \le p \le (n-1)$ and $q \ge 1$, with $p+q \le n$, let

$$\mathcal{C}_{j+1} = \mathbb{T}^n \times \{\xi_1 = \ldots = \xi_p = \ldots = \xi_{p+q} = 0\}$$

and

$$\mathcal{C}_j = \mathbb{T}^n \times \{\xi_1 = \ldots = \xi_p = 0\}.$$

Suppose $B \in \Psi_{2,h}^{0,0}(\mathcal{C}_{j+1})$ satisfies the cutoff condition (2.1). Then

$$B\Re^l_{\mathcal{C}_j} \subset \Re^l_{\mathcal{C}_{j+1}}$$

for each $l \in \mathbb{R}$.

Note that since there are fewer characteristic operators for C_j , we have $\Re_{C_{j+1}} \subset \Re_{C_j}$. Before proving Lemma 2.3, we give some examples.

Example 2.4. This example takes place in $T^*\mathbb{T}^2$. Let $\mathcal{C}_2 = o$ be the zero section, and let $\mathcal{C}_1 = \{\xi_1 = 0\}$. Let R be any element of $\Re^0_{\mathcal{C}_1}$. We will construct an operator A in the \mathcal{C}_2 -calculus that satisfies condition (2.1), then show that $AR \in \Re^0_{\mathcal{C}_2}$ (i.e., that AR is involutizing w.r.t. \mathcal{C}_2). More explicitly, since hD_{x_1} , hD_{x_2} generate the module of operators in $\Psi^0_h(\mathbb{T}^2)$ that are characteristic on \mathcal{C}_2 , we show that

$$h^{-k}(hD_{x_1})^k ARu \in L^2(\mathbb{T}^2) \text{ and } h^{-k}(hD_{x_2})^k ARu \in L^2(\mathbb{T}^2)$$

(for $u \in L^2(\mathbb{T}^2)$ and $k \in \mathbb{Z}_{\geq 0}$).

We want the microsupport of A to be disjoint from the lift of $C_1 \setminus C_2$ to $S_{pr}^{C_2} = [T^* \mathbb{T}^2; C_2]$. In this example, condition (2.1) is satisfied if $|\xi_1|$ is greater than $|\xi_2|$ (i.e., (ξ_1, ξ_2) lives in a cone away from $\beta_{C_2}^{-1}(C_1 \setminus C_2)$), and also $\xi_1 \ge h$. (More generally, condition (2.1) would hold if $|\xi_1| \ge c|\xi_2|$ for any positive constant c, no matter how small.) We therefore define

$$A := {}^{h} \operatorname{Op}_{l} \left[\psi \left(\frac{|\xi_{1}|}{\sqrt{\xi_{2}^{2} + h^{2}}} \right) \right] \in \Psi_{2,h}^{0,0}(\mathcal{C}_{2}),$$

where $\psi \in C^{\infty}(\mathbb{R})$ is supported in $[1, \infty)$. Then, we compute

$$D_{x_2}^k ARu(x) = \int \int \left(\frac{\xi_2}{h}\right)^k e^{\frac{i}{h}(x-y)\cdot\xi} \psi\left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right) \chi(x,y) Ru(y) \, dy d\xi$$

$$= \int \int \left(\frac{\xi_2}{h}\right)^k \left(\frac{h}{\xi_1}\right)^k \Delta_{y_1}^{k/2} \left[e^{\frac{i}{h}(x-y)\cdot\xi}\right] \psi\left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right) \chi(x,y) Ru(y) \, dy d\xi$$
$$= \int \int \left(\frac{\xi_2}{\xi_1}\right)^k e^{\frac{i}{h}(x-y)\cdot\xi} \psi\left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right) \chi(x,y) \Delta_{y_1}^{k/2} Ru(y) \, dy d\xi + \Psi_{2,h}^{-\infty,0}(\mathcal{C}_1).$$

Recall the convention that $\Delta_{y_1} = -\partial^2/\partial y_1^2$. Note that $\Delta_{y_1}^{k/2} Ru \in L^2(\mathbb{T}^2)$ because $R \in \Re^0_{\mathcal{C}_1}$. Note also that $\xi_2/\xi_1 \leq 1$ on the microsupport of A. This is crucial: if the amplitude becomes any worse, L^2 -boundedness may fail. Hence, AR is involutizing with respect to hD_{x_2} . This argument works even for odd values of k, since $h^2\Delta$ taken to a fractional power is well-defined as a pseudodifferential operator.

If instead we apply D_{x_1} , we use the fact that

$$D_{x_1}^k A R u = A D_{x_1}^k R u$$

Since R is involutizing with respect to $\{\xi_1 = 0\}$, and since the symbol of A belongs to $S^{0,0}(S^{\mathcal{C}_2}_{\text{tot}})$, we have $AD^k_{x_1}Ru \in L^2(\mathbb{T}^2)$.

FIGURE 2. Microsupport of cutoff when $C_2 = o$ and $C_2 = \{\xi_2 = 0\}$ in $T^*\mathbb{T}^2$

In Figure 2, the shaded region shows the microsupport of the cutoff operator when $C_2 = o$ and $C_2 = \{\xi_2 = 0\}$ in $T^*\mathbb{T}^2$ (base variables excluded from figure).

Example 2.5. Consider the zero section in $T^*\mathbb{T}^4$, nested inside the codimension two coisotropic $\mathcal{C}_1 = \{\xi_1 = \xi_2 = 0\}$. In this case, $A \in \Psi_{2,h}^{0,0}(\mathbb{T}^4; o)$ satisfying condition (2.1) would be micro-supported in $\{\xi_1^2 + \xi_2^2 \ge \xi_3^2 + \xi_4^2\}$. Thus, we would define

$$A := {}^{h} \operatorname{Op}_{1} \left[\psi \left(\frac{\sqrt{\xi_{1}^{2} + \xi_{2}^{2}}}{\sqrt{\xi_{3}^{2} + \xi_{4}^{2} + h^{2}}} \right) \right]$$

for ψ as before.

Proof of Lemma 2.3. For simplicity, we prove the lemma in the case l = 0. Define $A \in \Psi^{0,0}_{2,h}(\mathcal{C}_{j+1})$ as follows:

(2.2)
$$A := {}^{h} \operatorname{Op}_{1} \left[\psi \left(\frac{\sqrt{\xi_{1}^{2} + \ldots + \xi_{p}^{2}}}{\sqrt{c_{p+1}\xi_{p+1}^{2} + \ldots + c_{p+q}\xi_{p+q}^{2} + h^{2}}} \right) \right],$$

4

for $\psi \in C^{\infty}(\mathbb{R})$ supported on $[1, \infty)$; here, c_{p+1}, \ldots, c_{p+q} are positive constants. Note that while we used the left quantization to define A, any other quantization map would have worked just as well.

Then, for $u \in L^2(\mathbb{T}^n)$ and $R \in \Re^0_{\mathcal{C}_j}$, simultaneously apply the operators $D^{m_{p+1}}_{x_{p+1}}, \ldots, D^{m_{p+q}}_{x_{p+q}}$ to ARu(x). Set $m = \sum_{i=1}^q m_{p+i}$. Rewrite the phase term as

$$\left[\left(\frac{\xi_1}{h}\right)^2 + \ldots + \left(\frac{\xi_p}{h}\right)^2\right]^{-m/2} \Delta_{y_1\dots y_p}^{m/2} \left[e^{\frac{i}{h}(x-y)\cdot\xi}\right]$$

Next, integrate by parts, shifting the fractional Laplacian over to the term Ru(y), as the symbol of A is independent of y. Finally, use the fact that

$$\frac{\xi_{p+i}^2}{\xi_1^2 + \dots + \xi_p^2} \le \frac{1}{c_{p+i}}, \ 1 \le i \le q$$

on the microsupport of A, to prove L^2 -boundedness. Application of D_{x_1}, \ldots, D_{x_p} is handled using translation invariance, as in Example 2.4.

We include the positive constants in the definition (2.2) so that the conic microsupport of A may be as close to $\beta_{\mathcal{C}_{j+1}}^{-1}(\mathcal{C}_j \setminus \mathcal{C}_{j+1})$ as we like. Therefore, any B satisfying condition (2.1) is microsupported within the elliptic set of one of these operators A. Thus, by elliptic regularity, B may be factored as

$$B = A_0 A + S$$

for some $A_0 \in \Psi^{0,0}_{2,h}(\mathcal{C}_{j+1})$ and some $S \in \Re^0_{\mathcal{C}_{j+1}}$. Hence,

 $BR = A_0AR + SR.$

We just proved that $AR \in \Re^0_{\mathcal{C}_{j+1}}$. Then $A_0AR \in \Re^0_{\mathcal{C}_{j+1}}$, since the residual operators are an ideal.

Claim: For $R \in \Re^0_{\mathcal{C}_j}$ and $S \in \Re^0_{\mathcal{C}_{j+1}}$, $S \circ R \in \Re^0_{\mathcal{C}_{j+1}}$. Proof of Claim: We show

$$D_{x_1}^{m_1}\cdots D_{x_{p+q}}^{m_{p+q}}SR: L^2(\mathbb{T}^n) \longrightarrow L^2(\mathbb{T}^n)$$

for any $m_i \in \mathbb{Z}_{\geq 0}$. But this is just the composition of two L^2 -bounded operators. Certainly $R : L^2(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$; in fact, we have the much stronger mapping property that $Ru \in I^{\infty}_{(0)}(\mathcal{C}_j)$ for $u \in L^2(\mathbb{T}^n)$. Finally,

$$D_{x_1}^{m_1}\cdots D_{x_{p+q}}^{m_{p+q}}S: L^2(\mathbb{T}^n) \longrightarrow L^2(\mathbb{T}^n),$$

since $S \in \Re^0_{\mathcal{C}_{j+1}}$. Thus, the claim is proved. Note that the order of the composition is important: it is not the case that $RS \in \Re^0_{\mathcal{C}_{j+1}}$.

Therefore, $BR \in \Re^0_{\mathcal{C}_{i+1}}$.

Set

$$a(\xi;h) := \psi\left(\frac{\sqrt{\xi_1^2 + \ldots + \xi_p^2}}{\sqrt{c_{p+1}\xi_{p+1}^2 + \ldots + c_{p+q}\xi_{p+q}^2 + h^2}}\right) \in S^{0,0}\left(S_{\text{tot}}^{\mathcal{C}_{j+1}}\right).$$

Proof of Conjecture 2.1 in model case. Let $\mathcal{C}_{j+1} \subset \mathcal{C}_j \subset T^*\mathbb{T}^n$ be as in the proof of Lemma 2.3. We ask: Given $A \in \Psi^{0,0}_{2,h}(\mathcal{C}_{j+1})$ of the form (2.2) and $P \in \Psi^{m,l}_{2,h}(\mathcal{C}_j)$, is $A \circ P \in \Psi^{m,l}_{2,h}(\mathcal{C}_{j+1})$? Locally, let $p \in S^{0,0}\left(S^{\mathcal{C}_j}_{\text{tot}}\right)$ be a total symbol for P.

First, we show formally that $AP = {}^{h}\operatorname{Op}_{r}(a \cdot p) + AR$ for $R \in \Re^{0}_{\mathcal{C}_{j}}$. Due to the reduction theorem, modulo an element of $R \in \Re^{0}_{\mathcal{C}_{j}}$, we may choose $P = {}^{h}\operatorname{Op}_{r}(p)$. Therefore, modulo $AR \in \Re^{0}_{\mathcal{C}_{j+1}}$, we consider ${}^{h}\operatorname{Op}_{l}(a) \circ {}^{h}\operatorname{Op}_{r}(p)$. As in the proof of composition in [4], we compute

$${}^{h}\operatorname{Op}_{l}(a) \circ {}^{h}\operatorname{Op}_{r}(p) = (2\pi h)^{-2n} \int e^{\frac{i}{h}(x-z)\cdot\xi} e^{\frac{i}{h}(z-y)\cdot\eta} \chi(x,z)\chi(z,y)a(\xi;h)p(y,\eta;h) \, dzd\xi d\eta$$

= $(2\pi h)^{-n} \int e^{\frac{i}{h}(x-y)\cdot\eta} \chi(x,y)a(\eta;h)p(y,\eta;h) \, d\eta + \Psi_{2,h}^{-\infty,0}(\mathcal{C}_{j})$
= ${}^{h}\operatorname{Op}_{r}(a\cdot p),$

using stationary phase. More generally, for $P \in \Psi_{2,h}^{m,l}(\mathcal{C}_j)$, we have $AP \in \Psi_{2,h}^{m,l}(\mathcal{C}_{j+1}) + \Re_{\mathcal{C}_{j+1}}^{l}$. Finally, we have $a \cdot p \in S^{0,0}\left(S_{\text{tot}}^{\mathcal{C}_{j+1}}\right)$.

In particular, if a Lagrangian $\mathcal{L} \subset \mathcal{C}$, then for each m, l

$$B \circ \Psi^{m,l}_{2,h}(\mathcal{C}) \subset \Psi^{m,l}_{2,h}(\mathcal{L}),$$

where $B \in \Psi_{2,h}^{0,0}(\mathcal{L})$ is microsupported away from $\beta_{\mathcal{L}}^{-1}(\mathcal{C} \setminus \mathcal{L})$.

3. Second wavefronts of nested coisotropics

Now suppose we have coisotropic submanifolds $\mathcal{C}_2 \subset \mathcal{C}_1 \subset T^* \mathbb{T}^n$. Then

 $\mathcal{C}_2 \times \{h = 0\} \subset \mathcal{C}_1 \times \{h = 0\} \subset T^*X \times \{h = 0\} = \partial(T^*X \times [0, 1)) \subset T^*X \times [0, 1).$ Take $p \in \mathcal{C}_2$. Then $T_p(\mathcal{C}_2) \hookrightarrow T_p(\mathcal{C}_1)$. This descends to a map of normal spaces

$$\frac{T_p(T^*X)}{T_p(\mathcal{C}_2)} = N_p(\mathcal{C}_2) \longrightarrow N_p(\mathcal{C}_1) = \frac{T_p(T^*X)}{T_p(\mathcal{C}_1)}.$$

Thus, we have a natural bundle morphism $N(\mathcal{C}_2) \to N(\mathcal{C}_1)$. Hence, there is a canonical map $\pi : SN(\mathcal{C}_2) \longrightarrow SN(\mathcal{C}_1)$.

In words, the intuitive idea here is that since C_2 is smaller than C_1 , its spherical normal is larger; i.e., there are more (unit) normal directions for C_2 than for C_1 . This map π "condenses" or "collapses" all the normal directions in $SN(C_2)$ down to the relatively few normal directions in $SN(C_1)$. How?

We are ready to pose a conjecture relating the second wavefront sets associated to C_1 and C_2 . Note that for $l \in \mathbb{R}$, $k \in \mathbb{Z}_{\geq 0}$, $C_2 \subset C_1$ implies $I_{(l)}^k(C_2) \subset I_{(l)}^k(C_1)$, as $\mathfrak{M}_{C_2} \supset \mathfrak{M}_{C_1}$.

Conjecture 3.1. Let $l, m \in \mathbb{R}$, $k \in \mathbb{Z}_{\geq 0}$, and $u \in I^k_{(l)}(\mathcal{C}_2)$. Let $S \subset SN(\mathcal{C}_2)$. Then

²WF^{*m*,*l*}_{C₂}(*u*)
$$\cap$$
 S = $\emptyset \implies$ ²WF^{*m*,*l*}_{C₁}(*u*) $\cap \pi(S) = \emptyset$.

We give the heuristic idea behind this conjecture. Since C_2 is contained in C_1 , there are a greater number of characteristic operators associated to the smaller coisotropic C_2 . Therefore, all else being equal, it is a stronger condition for a distribution u to have coisotropic regularity with respect to C_2 . Translating this into the second microlocal language, it is *easier* for u to

have C_2 -second wavefront (in $SN(C_2)$) than C_1 -second wavefront (in $SN(C_1)$). Hence, if there is no C_2 -wavefront in some subset S of $SN(C_2)$, we hypothesize that there is no C_1 -wavefront in the corresponding subset $\pi(S)$ of $SN(C_1)$.

References

- N. Anantharaman, C. Fermanian-Kammerer, and F. Macià, Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal wigner measures, American Journal of Mathematics 137 (2015), no. 3, 577–638. Available at arXiv:1403.6088
- [2] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge University Press, 1999.
- [3] V. Guillemin and S. Sternberg, *Semi-classical analysis*, International Press, Boston, 2013.
- [4] R. Kadakia, Semiclassical second microlocalization at linear coisotropic submanifolds in the torus, 2017. Available at http://www-personal.umich.edu/~kadakia/2-micro.pdf
- [5] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer Verlag, Universitext, New York, 2001.
- [6] R. Melrose, Introduction to analysis on singular spaces, online notes, 2008. Available at http: //www-math.mit.edu/~rbm/InSisp/InSiSp.pdf
- [7] _____, Differential analysis on manifolds with corners, online notes. Available at http://www-math. mit.edu/~rbm/book.html
- [8] A. Vasy and J. Wunsch, Semiclassical second microlocal propagation of regularity and integrable systems, Journal d'Analyse Mathématique, vol. 108 (2009), 119–157. Available at http://www.math. northwestern.edu/~jwunsch/twomicro.pdf
- [9] M. Zworski, *Semiclassical analysis*, American Mathematical Society, Graduate Studies in Mathematics vol. 138, Providence R.I., 2012.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, 530 CHURCH STREET, ANN ARBOR, MI 48109

E-mail address: kadakia@umich.edu