NESTED COISOTROPICS AND SECOND MICROLOCALIZATION

Abstract. Our first goal is to understand the relationship between second microlocal pseudodifferential calculi $\Psi_{2,h}(\mathcal{C}_1), \Psi_{2,h}(\mathcal{C}_2)$ associated with nested coisotropic submanifolds $C_2 \subset C_1$. Then we consider the relationship between the corresponding second wavefront sets: ²WF_{C₁} $\subset SN(\mathcal{C}_1)$, ²WF_{C₂} $\subset SN(\mathcal{C}_2)$.

1. INTRODUCTION

In this paper, we consider chains of linear coisotropic submanifolds of $T^*\mathbb{T}^n$. By chains, we mean sequences of nested coisotropics

$$
\mathcal{C}_p \subset \ldots \subset \mathcal{C}_2 \subset \mathcal{C}_1 \subset T^* \mathbb{T}^n
$$

.

The codimension of \mathcal{C}_{j+1} is strictly greater than that of \mathcal{C}_j , so $p \leq n$.

This project is motivated by the paper [\[1\]](#page-5-0), in which the authors second microlocalize at sequences of nested *primitive submodules* inside \mathbb{Z}^n .

2. Calculi associated to nested coisotropics

We speculate a relationship between the second microlocal calculi determined by these coisotropics.

Conjecture 2.1. Let $\mathcal{C}_{j+1} \subset \mathcal{C}_j \subset T^*\mathbb{T}^n$. Let

$$
\beta_{\mathcal{C}_{j+1}} : [T^* \mathbb{T}^n; \mathcal{C}_{j+1}] \longrightarrow T^* \mathbb{T}^n
$$

be the blowdown map for C_{j+1} . Choose $B \in \Psi_{2,h}^{0,0}(C_{j+1})$ satisfying the condition

(2.1)
$$
{}^{2}\mathrm{WF}'_{0}(B) \cap \beta_{\mathcal{C}_{j+1}}^{-1}(\mathcal{C}_{j}\backslash \mathcal{C}_{j+1}) = \emptyset.
$$

Then

$$
B \circ \Psi_{2,h}(\mathcal{C}_j) \subset \Psi_{2,h}(\mathcal{C}_{j+1}).
$$

The idea behind this conjecture is as follows. As \mathcal{C}_j is the larger coisotropic, its spherical normal is smaller than that of C_{i+1} (i.e., is comprised of *fewer* normal directions). Consider a symbol function in the \mathcal{C}_j calculus. This is a function which may be singular at $\mathcal{C}_j \times \{h=0\}$, but whose singularity is resolved in the blowup. Since the introduction of fewer normal directions is sufficient to resolve this hypothetical singularity, introducing a greater number of normal directions would certainly resolve such a singularity. However, since the \mathcal{C}_{j+1} -total symbol space is the blowup of $C_{j+1} \times \{0\} \subset C_j \times \{0\}$, we must first apply a cutoff and specifically consider the singularity of the symbol at $C_{i+1} \times \{0\}$. So we conjecture that the symbol, after application of cutoff, may be regarded as a symbol in the \mathcal{C}_{j+1} calculus. In Figure [1,](#page-1-0) $\mathcal{C}_2 \subset \mathcal{C}_1$ is at the center of the sphere $(n = 3)$. We are cutting off away from the line segments to the left and right of the sphere. In particular:

Date: May 11, 2017.

FIGURE 1. Lifting part of C_1 to the C_2 -principal symbol space

Conjecture 2.2. Let $C_{j+1} \subset C_j$, as above. Let \Re_{C_j} denote the residual algebra in $\Psi_{2,h}(C_j)$, and likewise for $\Re_{C_{i+1}}$. For any operator B fulfilling condition [\(2.1\)](#page-0-0), we have

 $B\Re_{\mathcal{C}_i} \subset \Re_{\mathcal{C}_{i+1}}$.

More specifically, $B\mathbb{R}_{\mathcal{C}_j}^l \subset \mathbb{R}_{\mathcal{C}_{j+1}}^l$ for each $l \in \mathbb{R}$.

We have proved Conjecture [2.2](#page-1-1) in the model case:

Lemma 2.3. For $0 \le p \le (n-1)$ and $q \ge 1$, with $p + q \le n$, let

$$
\mathcal{C}_{j+1} = \mathbb{T}^n \times \{ \xi_1 = \ldots = \xi_p = \ldots = \xi_{p+q} = 0 \}
$$

and

$$
\mathcal{C}_j=\mathbb{T}^n\times\{\xi_1=\ldots=\xi_p=0\}.
$$

Suppose $B \in \Psi_{2,h}^{0,0}(\mathcal{C}_{j+1})$ satisfies the cutoff condition [\(2.1\)](#page-0-0). Then

$$
B\Re_{\mathcal{C}_j}^l\subset \Re_{\mathcal{C}_{j+1}}^l
$$

for each $l \in \mathbb{R}$.

Note that since there are fewer characteristic operators for \mathcal{C}_j , we have $\Re_{\mathcal{C}_{j+1}} \subset \Re_{\mathcal{C}_j}$. Before proving Lemma [2.3,](#page-1-2) we give some examples.

Example 2.4. This example takes place in $T^* \mathbb{T}^2$. Let $\mathcal{C}_2 = o$ be the zero section, and let $C_1 = \{\xi_1 = 0\}$. Let R be any element of $\mathcal{R}_{C_1}^0$. We will construct an operator A in the C_2 -calculus that satisfies condition [\(2.1\)](#page-0-0), then show that $AR \in \mathbb{R}_{\mathcal{C}_2}^0$ (i.e., that AR is involutizing w.r.t. C_2). More explicitly, since hD_{x_1} , hD_{x_2} generate the module of operators in $\Psi_h^0(\mathbb{T}^2)$ that are characteristic on \mathcal{C}_2 , we show that

$$
h^{-k}(hD_{x_1})^kARu \in L^2(\mathbb{T}^2)
$$
 and $h^{-k}(hD_{x_2})^kARu \in L^2(\mathbb{T}^2)$

(for $u \in L^2(\mathbb{T}^2)$ and $k \in \mathbb{Z}_{\geq 0}$).

We want the microsupport of A to be disjoint from the lift of $C_1 \backslash C_2$ to $S_{\text{pr}}^{\mathcal{C}_2} = [T^* \mathbb{T}^2; \mathcal{C}_2].$ In this example, condition [\(2.1\)](#page-0-0) is satisfied if $|\xi_1|$ is greater than $|\xi_2|$ (i.e., $(\bar{\xi}_1, \bar{\xi}_2)$ lives in a cone away from $\beta_{\mathcal{C}_2}^{-1}$ $\zeta_2^{-1}(\mathcal{C}_1 \backslash \mathcal{C}_2)$, and also $\xi_1 \geq h$. (More generally, condition [\(2.1\)](#page-0-0) would hold if $|\xi_1| \geq c |\xi_2|$ for any positive constant c, no matter how small.) We therefore define

$$
A := {}^{h}\mathrm{Op}_{\mathrm{l}}\left[\psi\left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right)\right] \in \Psi_{2,h}^{0,0}(\mathcal{C}_2),
$$

where $\psi \in C^{\infty}(\mathbb{R})$ is supported in $[1, \infty)$. Then, we compute

$$
D_{x_2}^k A R u(x) = \int \int \left(\frac{\xi_2}{h}\right)^k e^{\frac{i}{h}(x-y)\cdot\xi} \psi\left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right) \chi(x, y) R u(y) \ dy d\xi
$$

$$
= \int \int \left(\frac{\xi_2}{h}\right)^k \left(\frac{h}{\xi_1}\right)^k \Delta_{y_1}^{k/2} \left[e^{\frac{i}{h}(x-y)\cdot\xi}\right] \psi \left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right) \chi(x, y) Ru(y) dyd\xi
$$

=
$$
\int \int \left(\frac{\xi_2}{\xi_1}\right)^k e^{\frac{i}{h}(x-y)\cdot\xi} \psi \left(\frac{|\xi_1|}{\sqrt{\xi_2^2 + h^2}}\right) \chi(x, y) \Delta_{y_1}^{k/2} Ru(y) dyd\xi + \Psi_{2,h}^{-\infty,0}(\mathcal{C}_1).
$$

Recall the convention that $\Delta_{y_1} = -\partial^2/\partial y_1^2$. Note that $\Delta_{y_1}^{k/2} R u \in L^2(\mathbb{T}^2)$ because $R \in \mathbb{R}_{C_1}^0$. Note also that $\xi_2/\xi_1 \leq 1$ on the microsupport of A. This is crucial: if the amplitude becomes any worse, L^2 -boundedness may fail. Hence, AR is involutizing with respect to hD_{x_2} . This argument works even for odd values of k, since $h^2\Delta$ taken to a fractional power is well-defined as a pseudodifferential operator.

If instead we apply D_{x_1} , we use the fact that

$$
D_{x_1}^k ARu = AD_{x_1}^k Ru.
$$

Since R is involutizing with respect to $\{\xi_1 = 0\}$, and since the symbol of A belongs to $S^{0,0} (S_{\text{tot}}^{C_2})$, we have $AD_{x_1}^k Ru \in L^2(\mathbb{T}^2)$.

FIGURE 2. Microsupport of cutoff when $\mathcal{C}_2 = o$ and $\mathcal{C}_2 = {\xi_2 = 0}$ in $T^* \mathbb{T}^2$

In Figure [2,](#page-2-0) the shaded region shows the microsupport of the cutoff operator when $\mathcal{C}_2 = o$ and $C_2 = \{\xi_2 = 0\}$ in $T^*\mathbb{T}^2$ (base variables excluded from figure).

Example 2.5. Consider the zero section in $T^*\mathbb{T}^4$, nested inside the codimension two coisotropic $\mathcal{C}_1 = \{\xi_1 = \xi_2 = 0\}$. In this case, $A \in \Psi_{2,h}^{0,0}(\mathbb{T}^4; o)$ satisfying condition [\(2.1\)](#page-0-0) would be microsupported in $\{\xi_1^2 + \xi_2^2 \geq \xi_3^2 + \xi_4^2\}$. Thus, we would define

$$
A := {}^{h} \text{Op}_1\left[\psi\left(\frac{\sqrt{\xi_1^2 + \xi_2^2}}{\sqrt{\xi_3^2 + \xi_4^2 + h^2}}\right)\right]
$$

for ψ as before.

Proof of Lemma [2.3.](#page-1-2) For simplicity, we prove the lemma in the case $l = 0$. Define $A \in$ $\Psi_{2,h}^{0,0}(\mathcal{C}_{j+1})$ as follows:

(2.2)
$$
A := {}^{h} \text{Op}_1 \left[\psi \left(\frac{\sqrt{\xi_1^2 + \ldots + \xi_p^2}}{\sqrt{c_{p+1} \xi_{p+1}^2 + \ldots + c_{p+q} \xi_{p+q}^2 + h^2}} \right) \right],
$$

.

4

for $\psi \in C^{\infty}(\mathbb{R})$ supported on $[1,\infty)$; here, c_{p+1},\ldots,c_{p+q} are positive constants. Note that while we used the left quantization to define A, any other quantization map would have worked just as well.

Then, for $u \in L^2(\mathbb{T}^n)$ and $R \in \mathbb{R}_{\mathcal{C}_j}^0$, simultaneously apply the operators $D_{x_{p+1}}^{m_{p+1}}, \ldots, D_{x_{p+q}}^{m_{p+q}}$ to $ARu(x)$. Set $m = \sum_{i=1}^{q} m_{p+i}$. Rewrite the phase term as

$$
\left[\left(\frac{\xi_1}{h} \right)^2 + \ldots + \left(\frac{\xi_p}{h} \right)^2 \right]^{-m/2} \Delta_{y_1 \ldots y_p}^{m/2} \left[e^{\frac{i}{h}(x-y) \cdot \xi} \right]
$$

Next, integrate by parts, shifting the fractional Laplacian over to the term $Ru(y)$, as the symbol of A is independent of y . Finally, use the fact that

$$
\frac{\xi_{p+i}^2}{\xi_1^2 + \ldots + \xi_p^2} \le \frac{1}{c_{p+i}}, \ 1 \le i \le q
$$

on the microsupport of A, to prove L^2 -boundedness. Application of D_{x_1}, \ldots, D_{x_p} is handled using translation invariance, as in Example [2.4.](#page-1-3)

We include the positive constants in the definition [\(2.2\)](#page-2-1) so that the conic microsupport of A may be as close to $\beta_{\mathcal{C}_{\delta}}^{-1}$ $C_{\mathcal{C}_{j+1}}^{-1}(\mathcal{C}_{j}\backslash\mathcal{C}_{j+1})$ as we like. Therefore, any B satisfying condition (2.1) is microsupported within the elliptic set of one of these operators A. Thus, by elliptic regularity, B may be factored as

$$
B = A_0 A + S
$$

for some $A_0 \in \Psi_{2,h}^{0,0}(\mathcal{C}_{j+1})$ and some $S \in \Re_{\mathcal{C}_{j+1}}^0$. Hence,

 $BR = A_0AR + SR$.

We just proved that $AR \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$. Then $A_0AR \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$, since the residual operators are an ideal.

Claim: For $R \in \mathbb{R}_{\mathcal{C}_j}^0$ and $S \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$, $S \circ R \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$. Proof of Claim: We show

$$
D_{x_1}^{m_1} \cdots D_{x_{p+q}}^{m_{p+q}} SR : L^2(\mathbb{T}^n) \longrightarrow L^2(\mathbb{T}^n)
$$

for any $m_i \in \mathbb{Z}_{\geq 0}$. But this is just the composition of two L^2 -bounded operators. Certainly $R : L^2(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$; in fact, we have the much stronger mapping property that $Ru \in$ $I_{(0)}^{\infty}(\mathcal{C}_j)$ for $u \in L^2(\mathbb{T}^n)$. Finally,

$$
D_{x_1}^{m_1}\cdots D_{x_{p+q}}^{m_{p+q}}S: L^2(\mathbb{T}^n)\longrightarrow L^2(\mathbb{T}^n),
$$

since $S \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$. Thus, the claim is proved. Note that the order of the composition is important: it is not the case that $RS \in \mathbb{R}^0_{\mathcal{C}_{j+1}}$.

Therefore, $BR \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$.

Set

$$
a(\xi; h) := \psi \left(\frac{\sqrt{\xi_1^2 + \ldots + \xi_p^2}}{\sqrt{c_{p+1} \xi_{p+1}^2 + \ldots + c_{p+q} \xi_{p+q}^2 + h^2}} \right) \in S^{0,0} \left(S_{\text{tot}}^{\mathcal{C}_{j+1}} \right).
$$

Proof of Conjecture [2.1](#page-0-1) in model case. Let $C_{j+1} \subset C_j \subset T^* \mathbb{T}^n$ be as in the proof of Lemma [2.3.](#page-1-2) We ask: Given $A \in \Psi_{2,h}^{0,0}(\mathcal{C}_{j+1})$ of the form (2.2) and $P \in \Psi_{2,h}^{m,l}(\mathcal{C}_j)$, is $A \circ P \in \Psi_{2,h}^{m,l}(\mathcal{C}_{j+1})$? Locally, let $p \in S^{0,0}\left(S_{\text{tot}}^{\mathcal{C}_j}\right)$ be a total symbol for P.

First, we show formally that $AP = {}^h{\rm Op}_r(a \cdot p) + AR$ for $R \in \mathbb{R}_{\mathcal{C}_j}^0$. Due to the reduction theorem, modulo an element of $R \in \mathbb{R}_{\mathcal{C}_j}^0$, we may choose $P = {}^h{\rm Op}_r(p)$. Therefore, modulo $AR \in \mathbb{R}_{\mathcal{C}_{j+1}}^0$, we consider ${}^hOp_1(a) \circ {}^hOp_r(p)$. As in the proof of composition in [\[4\]](#page-5-1), we compute

$$
{}^{h}Op_{l}(a) \circ {}^{h}Op_{r}(p) = (2\pi h)^{-2n} \int e^{\frac{i}{h}(x-z)\cdot\xi} e^{\frac{i}{h}(z-y)\cdot\eta} \chi(x,z) \chi(z,y) a(\xi;h) p(y,\eta;h) dz d\xi d\eta
$$

$$
= (2\pi h)^{-n} \int e^{\frac{i}{h}(x-y)\cdot\eta} \chi(x,y) a(\eta;h) p(y,\eta;h) d\eta + \Psi_{2,h}^{-\infty,0}(\mathcal{C}_{j})
$$

$$
= {}^{h}Op_{r}(a\cdot p),
$$

using stationary phase. More generally, for $P \in \Psi_{2,h}^{m,l}(\mathcal{C}_j)$, we have $AP \in \Psi_{2,h}^{m,l}(\mathcal{C}_{j+1}) + \Re_{\mathcal{C}_{j+1}}^l$. Finally, we have $a \cdot p \in S^{0,0} \left(S^{\mathcal{C}_{j+1}}_{\text{tot}} \right)$.

In particular, if a Lagrangian $\mathcal{L} \subset \mathcal{C}$, then for each m, l

$$
B\circ \Psi_{2,h}^{m,l}(\mathcal{C})\subset \Psi_{2,h}^{m,l}(\mathcal{L}),
$$

where $B \in \Psi_{2,h}^{0,0}(\mathcal{L})$ is microsupported away from $\beta_{\mathcal{L}}^{-1}$ $\iota_{\mathcal{L}}^{-1}(\mathcal{C}\backslash\mathcal{L}).$

3. Second wavefronts of nested coisotropics

Now suppose we have coisotropic submanifolds $C_2 \subset C_1 \subset T^*\mathbb{T}^n$. Then

 $C_2 \times \{h = 0\} \subset C_1 \times \{h = 0\} \subset T^*X \times \{h = 0\} = \partial(T^*X \times [0, 1)) \subset T^*X \times [0, 1).$ Take $p \in C_2$. Then $T_p(C_2) \hookrightarrow T_p(C_1)$. This descends to a map of normal spaces

$$
\frac{T_p(T^*X)}{T_p(\mathcal{C}_2)} = N_p(\mathcal{C}_2) \longrightarrow N_p(\mathcal{C}_1) = \frac{T_p(T^*X)}{T_p(\mathcal{C}_1)}.
$$

Thus, we have a natural bundle morphism $N(\mathcal{C}_2) \to N(\mathcal{C}_1)$. Hence, there is a canonical map $\pi: SN(\mathcal{C}_2) \longrightarrow SN(\mathcal{C}_1).$

In words, the intuitive idea here is that since \mathcal{C}_2 is smaller than \mathcal{C}_1 , its spherical normal is larger; i.e., there are more (unit) normal directions for C_2 than for C_1 . This map π "condenses" or "collapses" all the normal directions in $SN(\mathcal{C}_2)$ down to the relatively few normal directions in $SN(\mathcal{C}_1)$. **How?**

We are ready to pose a conjecture relating the second wavefront sets associated to C_1 and \mathcal{C}_2 . Note that for $l \in \mathbb{R}$, $k \in \mathbb{Z}_{\geq 0}$, $\mathcal{C}_2 \subset \mathcal{C}_1$ implies $I^k_{(l)}(\mathcal{C}_2) \subset I^k_{(l)}(\mathcal{C}_1)$, as $\mathfrak{M}_{\mathcal{C}_2} \supset \mathfrak{M}_{\mathcal{C}_1}$.

Conjecture 3.1. Let $l, m \in \mathbb{R}, k \in \mathbb{Z}_{\geq 0}$, and $u \in I_{(l)}^k(\mathcal{C}_2)$. Let $S \subset SN(\mathcal{C}_2)$. Then

$$
{}^{2}\mathrm{WF}^{m,l}_{\mathcal{C}_{2}}(u) \cap S = \emptyset \implies {}^{2}\mathrm{WF}^{m,l}_{\mathcal{C}_{1}}(u) \cap \pi(S) = \emptyset.
$$

We give the heuristic idea behind this conjecture. Since \mathcal{C}_2 is contained in \mathcal{C}_1 , there are a greater number of characteristic operators associated to the smaller coisotropic C_2 . Therefore, all else being equal, it is a stronger condition for a distribution u to have coisotropic regularity with respect to \mathcal{C}_2 . Translating this into the second microlocal language, it is easier for u to have C_2 -second wavefront (in $SN(C_2)$) than C_1 -second wavefront (in $SN(C_1)$). Hence, if there is no C_2 -wavefront in some subset S of $SN(C_2)$, we hypothesize that there is no C_1 -wavefront in the corresponding subset $\pi(S)$ of $SN(\mathcal{C}_1)$.

REFERENCES

- [1] N. Anantharaman, C. Fermanian-Kammerer, and F. Macià, Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal wigner measures, American Journal of Mathematics 137 (2015), no. 3, 577–638. Available at [arXiv:1403.6088](http://arxiv.org/abs/1403.6088)
- [2] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge University Press, 1999.
- [3] V. Guillemin and S. Sternberg, Semi-classical analysis, International Press, Boston, 2013.
- [4] R. Kadakia, Semiclassical second microlocalization at linear coisotropic submanifolds in the torus, 2017. Available at <http://www-personal.umich.edu/~kadakia/2-micro.pdf>
- [5] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer Verlag, Universitext, New York, 2001.
- [6] R. Melrose, Introduction to analysis on singular spaces, online notes, 2008. Available at [http:](http://www-math.mit.edu/~rbm/InSisp/InSiSp.pdf) [//www-math.mit.edu/~rbm/InSisp/InSiSp.pdf](http://www-math.mit.edu/~rbm/InSisp/InSiSp.pdf)
- [7] , Differential analysis on manifolds with corners, online notes. Available at [http://www-math.](http://www-math.mit.edu/~rbm/book.html) [mit.edu/~rbm/book.html](http://www-math.mit.edu/~rbm/book.html)
- [8] A. Vasy and J. Wunsch, Semiclassical second microlocal propagation of regularity and integrable systems, Journal d'Analyse Mathématique, vol. 108 (2009), 119–157. Available at [http://www.math.](http://www.math.northwestern.edu/~jwunsch/twomicro.pdf) [northwestern.edu/~jwunsch/twomicro.pdf](http://www.math.northwestern.edu/~jwunsch/twomicro.pdf)
- [9] M. Zworski, Semiclassical analysis, American Mathematical Society, Graduate Studies in Mathematics vol. 138, Providence R.I., 2012.

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109

E-mail address: kadakia@umich.edu